Tetrahedron Letters, Vol.27, No.1, pp 75-76, 1986 Printed in Great Britain

OXIDATIVE CLEAVAGE OF SILICON-CARBON BOND WITH TRIMETHYLAMINE-N-OXIDE. NEW ACCESS TO PRIMARY ALCOHOLS AND ALDEHYDES FROM TERMINAL ALKENES AND ALKYNES¹⁾

Hideki Sakurai,^{*} Masatomo Ando, Nobuo Kawada Kazuhiko Sato and Akira Hosomi^{*,†} Department of Chemistry, Tohoku University, Sendai 980, Japan

Summary: Oxidative cleavage of carbon-silicon bond of organosilanes with trimethylamine-N-oxide is achieved under mild conditions. The reaction occurs chemoselectively irrespective of the presence of amino and thio groups to give formally anti-Markovnikov hydration products of l-alkenes and l-alkynes via hydrosilylation.

Functional group transformations by C-Si bond cleavage of organosilicon compounds are important in organic synthesis.²⁾ The smooth oxidative cleavage of a C-Si bond by peracid and peroxide has attracted much attention recently.³⁾ We have previously reported that organoalkoxysilanes and organosilatranes undergo oxidative cleavage with m-chloroperbenzoic acid to give the corresponding alcohols.⁴⁾ However, the use of peracid or peroxide is rather limited to the substrates with functional groups insensitive to such oxidizing reagents. We report herein a novel C-Si bond cleavage reaction of organosilanes (1) with trimethylamine-N-oxide (3)⁵⁾ to afford alcohols (2) stereospecifically. (eq. 1)

$$\frac{\text{Me}_{3}\text{NO}(3)}{\text{KF}\cdot\text{HF}} R-OH$$
(1)

A typical experimental procedure is as follows: A mixture of octylsilane (1a) (1 mmol) and trimethylamine oxide (2.5 mmol) was stirred in DMF (5 ml) in the presence of KHF_2 (3 mmol) at 70 °C for 36 h and hydrolyzed with water. Work-up (ether extraction, drying and solvent evaporation) and purification by TLC on silica gel gave 1-octanol (2a) (108 mg, 0.83 mmol) in 83% yield.

Representative results are summarized in Table 1. The general features of the reaction are as follows: (1) KHCO_3 and KF can be used as the additive instead of KHF_2 . (2) Functional groups such as OR, halogen, NR_2 , and RS are not affected under the reaction conditions which are sensitive to peracid and peroxide. (3) The stereochemistry is retained with respect to the alkyl group of $\frac{1}{2}$. (4) Aldehyde [†] Present address: Faculty of Pharmacentical Sciences, Nagasaki University, Nagasaki 852

Table 1. Oxidative cleavage of Si-C bond of organosilanes (1) with trimethylamine N-oxide in DMF

R-SiMe(OEt) ₂				R-OH (or R'CHO)						
	2									
Enti	ry Rin <u>]</u>		Cor	ndit	ions	_a)	Product	(<u>2</u>)	% Yield ^{b)}	
1	n~C ₈ H ₁₇	(<u>l</u> a)	70	°C,	36	h	n-C ₈ H ₁₇ OH	(2a)	83	
2	la la		140	°C,	.5	h	2a		96 ^{C)}	
3	MeO2C(CH2)10	(<u>l</u> b)	80	°C,	8	h	MeO2C(CH2)10OH	(2b)	76	
4	1 ^b		130	°C,	15	h	2b		79	
5	Įb		80	°C,	8	h ^d	2b		76	
6	1b		80	°C,	12	h ^{e)}	2b		65	
7	PhO(CH_2) ₃	(<u>1</u> c)	70	°C,	10	h	PhO(CH ₂) ₃ OH	(2c)	79	
8	Cl (CH ₂) 5	(<u>1</u> d)	70	°C,	4	h	C1 (CH ₂) 50H	(2d)	71	
9	PhMeN(CH_2) ₃	(le)	80	°C,	5	h	PhMeN(CH ₂) ₃ OH	(2e)	72	
10	PhS $(CH_2)_3$	(lf)	80	°C,	7	h	PhS (CH ₂) 3OH	(2f)	46	
11	endo-Nornonyl	(lֱg) ^{f)}	80	°C,	8	h	endo-Norbornol	(2g) ^{g)}	60	
12	n-C6H13CH=CH	(lh)	130	°C,	5	h	^{n-C} 7 ^H 15 ^{CHO}	(2h)	68	

a) KHF₂ was used, unless otherwise noted. b) Yields after isolation by TLC. c) Determined by GLC. d) KF (4 equiv.) was used. e) KHCO₃ (1 equiv.) was used. f) Triethoxysilane (endo/exo = 63/37) was used instead of methyldiethoxysilane. g) Endo/exo = 80/20.

(2h) can be obtained from 1-alkenylsilane (1h).

The new reaction corresponds to the alcohol synthesis by the anti-Markovnikov hydration in one pot operation since the starting organosilanes (1) can be readily prepared from 1-alkenes and 1-alkynes by the transition metal-catalyzed hydrosily1ation. (eq. 2)

$$MeO_2C(CH_2)_8CH=CH_2 \xrightarrow{\text{HSIMe}(OEt)_2} \xrightarrow{\text{Me}_3NO} MeO_2C(CH_2)_{10}OH (2)$$

RhCl(PPh_3)_3 KHF_2/DMF
1b 2b, 72%

We thank Professor J. A. Soderquist for helpful discussions and informations of his results prior to publication.

References

- 1) Chemistry of Organosilicon Compounds 208.
- 2) For reviews, see W. P. Weber, "Silicon Reagents for Organic Synthesis," Springer-Verlag, 1983; E. W. Colvin, "Silicon in Organic Synthesis," Butterworth, 1981.
- Recent works in this area can be traced in the following references. K. Tamao, T. Kakui, M. Akita, T. Iwahara, R. Kanatani, J. Yoshida, and M. Kumada, <u>Tetrahedron</u>, 39, 983 (1983); K. Tamao, N. Ishida, T. Tanaka, and M. Kumada, <u>Organometallics</u>, 2, 1694 (1983); K. Tamao, M. Kumada, and K. Maeda, <u>Tetrahedron Lett</u>., 25, 321 (1984); K. Tamao and N. Ishida, <u>ibid</u>., 25, 4245 (1984); Idem, <u>J. Organomet. Chem.</u>, 269, 637 (1984).
- 4) A. Hosomi, S. Iijima, and H. Sakurai, <u>Chem. Lett</u>., 1981, 243. 5) For Si-Si bond cleavage with amine N-oxide, see H. Sakurai, M. Kira, and M. Kumada, <u>Bull.</u> Chem. Soc. Japan, 44, 1167 (1971).

(Received in Japan 19 October 1985)